Age | Commit message (Collapse) | Author | Lines |
|
During the last month, several core GNU programs were updated, so their
versions in the pipeline have also been updated.
|
|
Both Gzip and Gnuastro were being bootstrapped personally from their Git
repository until now. But fortunately a new release of both came out last
week and so to make things standard we are now using their standard
tarballs.
I also noticed that we weren't checking the version of Gzip or mentioning
it in the acknowledgement section. This was also corrected.
|
|
A minor correction was made in the checklist (since we only have one
`foreach' loop in the top-level Makefile) and also the version of Gnuastro
was incremented.
|
|
The version of Git was updated to the most recent version (2.20.0).
|
|
Gnuastro's BuildProgram is a little special: it is actually built during
the building of Gnuastro to keep important include and lib directory
information and if someone wants to use BuildProgram, this information is
necessary. So a special configuration is added for it in
`reproduce/config/gnuastro'. This configuration file will allow users to
set their own special configuration if they like, then it will load the
installed BuildProgram configuration file.
|
|
The build systems of Libgit2 and WCSLIB on Mac OS does not account for
installation in non-standard addresses: `Libgit2' keeps the absolute
address of its build directory (not the installation directory) and WCSLIB
doesn't write any absolute address at all (so the system uses the first one
it finds).
To address these issues, we are now using Mac OS's `install_name_tool'
program to fix the absolute path within the installed shared library.
Since the version of the library is actually present in its shared library
name, in `dependency-versions.mk' we have also separated these two
libraries so later when their version is changed, we are careful in
correcting the shared library name also.
|
|
Some high-level programs like Wget and cURL need to be built in shared mode
because they also include dynamic loading of libraries. Therefore, if we
only build the lower-level libraries in static mode, our own build will be
ignored and they will go and find the system's shared libraries to link
with. Because of this, for now, we have manually set the `static_build'
variable in the configure script to `no'.
Also, if the downloader fails, we'll delete the output (an empty file in
the case of Wget) because it interefers with a target definition.
|
|
The TeX Live installer needs Wget to operate smoothly, especially on recent
Mac OS systems that don't have Wget pre-installed. Also, it would be good
for the pipeline to have its own downloader. So with this commit, the
pipeline also installs Wget and OpenSSL which is a dependency.
Many other small changes/fixes were done in this process.
|
|
The pipeline now installs GCC and all its necessary prerequisites.
|
|
Until now we weren't explicity writing the full path of the dynamic
libraries necessary for linking a program. But now with
`-Wl,-rpath=$(ildir)' we ensure that the linker keeps the address of the
dynamic libraries necessary for linking at linking time, not running
time. Also, `pkg-config' is also built when preparing the basics. Several
other minor corrections were made thanks to the great help of Raúl Infante
Sainz.
|
|
The high-level dependencies are now built without having access to the
system's PATH. To do this, all the necessary software that we aren't
building ourselves are now brought into the installed `bin/' directory
using a symbolic link to the corresponding software on the host. To do
this, it was also necessary to increase the number of basic/low-level
packages that we are building, and add several more (Diffutils and
Findutils).
With this process in place, we now have a list of the exact software
packages that we are not building our selves, enabling easy building of all
such dependencies in the future.
|
|
While working on a research project using this pipeline, I noticed that we
don't have any `sh' executable within our PATH. However, some programs
(including Gnuastro's configure script, when it is checking for shells to
use with Libtool) check and use it. So after building Bash, we also build
an `sh' symbolic link to point to the built Bash executable.
|
|
Until now, we were keeping the input file within the reproduction
pipeline's directories using the same name as the database/server. Now, we
are using a short/summarized filename convention for the input dataset.
|
|
In most analysis situations (except for simulations), an input dataset is
necessary, but that part of the pipeline was just left out and a general
`SURVEY' variable was set and never used. So with this commit, we actually
use a sample FITS file from the FITS standard webpage, show it (as well as
its histogram) and do some basic calculations on it.
This preparation of the input datasets is done in a generic way to enable
easy addition of more datasets if necessary.
|
|
A new version of the ghostscript package is now available, so the used
version in the pipeline (previously 9.25) has been incremented to 9.26.
|
|
When the C compiler is not GNU GCC, linking with GNU Binutils is going to
cause problems. So until the time that we can include GCC into this
pipeline, its best to avoid Binutils also.
Also, for building CMake, we were relying on an installed CMake, but now,
we are using its own `./bootstrap' script, so it can be built even if the
host system doesn't have CMake.
Also, for TeX Live, we are now setting a custom file as main target to
avoid complications with symbolic links as targets in Make.
Finally, when the user says they don't want to re-write an existing
configuration file, no extra notices will be printed and the configure
script will immediately start building programs.
|
|
Since the final product of the pipeline is a LaTeX-created PDF file, it was
necessary to also have LaTeX within the pipeline. With this commit, TeX
Live is also built as part of the configuration and all the necessary
packages to build the PDF are also installed and mentioned in the paper
along with their versions.
|
|
TeX Live is now also downloaded and built by the reproduction
pipeline. Currently on the basic (TeX and LaTeX) source is built but no
extra packages, so the PDF building will fail. We'll add them in the next
commit.
|
|
To have better control over the build, GNU Binutils, Bzip2, GNU Gzip, and
XZ Utils have also been added to the pipeline. Some other minor cleanups
and fixes were also implemented throughout the process.
|
|
Until now, when a package was to be built statically, we were adding the
`--static' option to `CFLAGS'. This was the wrong place to put it! It
should be in the linking step (thus `LDFLAGS'). Also, based on Bash's
configure script, we are now using the more generic form of `-static'
(single dash, not double dash).
On the other hand, the `--disable-shared' option isn't available in many of
the packages and it is highly redundant with the `-static' option, so it
has been removed to avoid an extra warning in such packages.
|
|
To ensure the easy unpacking and building of the programs, Lzip and Tar are
now also build during the initial setup phase.
Some minor corrections were also applied to make things cleaner and
smoother.
|
|
After a test by Raúl Infante Sainz, we found out that the configure script
and the Make script for Bash and Make are making too many assumptions on
more recent versions of both. As a result, it couldn't be built.
Therefore, the `configure' script was modified to not use more recent tools
like `readlink' (to find the absolute address of a relative one). It was
also re-organized to not have to read the configuration parameters from a
text file. The parameters are directly read from the command-line and are
written into the proper file afterwards. This removes the need to opening a
text editor by the user (which also caused problems on Raúl's system).
To fix the Make version issue, the building of Bash and Make are now done
in a new Makefile (`reproduce/src/make/dependencies-basic.mk'). This file
doesn't make many of the assumptions that were made in
`dependencies.mk'. So it should hopefully work on any version of Make.
To help in debugging, for now, the Makefile of configure, are asked to work
on one thread (the `-j' option is commented in the `configure'). But after
checks, we'll fix this.
|
|
All the libraries that define their version string as a macro in their
headers are now also checked in `reproduce/src/make/initialize.mk'.
Also, the CFITSIO tarball now follows the same versioning style as the rest
of the tarballs: a script is added to convert the version string into what
is included in the tarball.
|
|
The version of all programs is now checked in
`reproduce/make/src/initialize.mk' and the pipeline won't complete if any
of the program versions change from those listed in
`reproduce/config/pipeline/dependency-versions.mk'.
Since the pipeline is systematically checking all program versions, we
don't need Gnuastro's `--onlyversion' option any more. So it (and all
references to it) have been removed.
|
|
During the configuration step several new programs that were necessary for
a more complete controlled environment are now also downloaded and built
statically.
|
|
To enable easy/proper reproduction of results, all the high-level
dependencies are now built within the pipeline and installed in a fixed
directory that is added to the PATH of the Makefile. This includes GNU Bash
and GNU Make, which are then used to run the pipeline.
The `./configure' script will first build Bash and Make within itself, then
it will build
All the dependencies are also built to be static. So after they are built,
changing of the system's low-level libraries (like C library) won't change
the tarballs.
Currently the C library and C compiler aren't built within the pipeline,
but we'll hopefully add them to the build process also.
With this change, we now have full control of the shell and Make that will
be used in the pipeline, so we can safely remove some of the generalities
we had before.
|
|
Making plots and including references are integral parts of a scientific
paper. Therefore to demonstrate how cleanly they can be used within the
pipeline, they are now used to produce the final PDF.
To use PGFPlots a random dataset is made (using AWK's random function) and
is plotted using PGFPlots. The minimum and maximum values of the dataset
are also included in the text to further show how such calculations can go
into the macros and text.
For the references, the NoiseChisel paper was added as a reference to cite
when using this pipeline along with the MUSE UDF paper I, which uses this
pipeline for two sections. Following this discussion, citation is also
discussed in `README.md` and the NoiseChisel paper is also added as a
published work with a reproduction pipeline.
|
|
The mandatory and optional (for example downloader) dependencies are now
checked at configure time so users can know what they may be missing before
the processing starts. Since its recommended to be run in parallel, it can
be hard to find what you are missing after running the pipeline. As part of
these checks, the program to use for downloading is now also set at
configure time, it is only used as a pre-defined (in `LOCAL.mk') variable
during Make's processing.
A small title was also added to discus the pipeline architecture that will
be filled in the next commit.
|
|
Two minor typo corrections in the comments were made in Gnuastro's
configuration file to make it more clear.
|
|
As described in the commens above `MINMAPSIZE' of `LOCAL.mk.in', the amount
of memory to map to HDD/SSD or keep in RAM is a local issue and not
relevant to the pipeline's results. So it is now defined in a
`gnuastro-local.conf' file.
To keep the Makefiles clean, this file is created by the `./configure'
script. To do this cleanly, the `./configure' script was also almost fully
re-written with better functionality now.
|
|
The previous change where we had set the building of the PDF as a local
(and thus not version controlled) setting was not good, because different
commits might be made without the high-level preparations for the final PDF
(especially during the initial/testing phases of a research). Therefore, if
the runner of the pipeline is ignorant to this, they may hit some errors in
LaTeX which can be frustrating.
To have a clean reproduction, it is thus necessary to have the choice of
pdf-building under version control along with the rest of the pipeline.
|
|
The choice of whether or not to make a PDF is now also a local system
issue, not a general pipeline issue. So it has been put in the new
`LOCAL.mk.in' file which replaces the old `DIRECTORIES.mk.in'. All local
settings (things that when changed should not be version-controlled) should
be defined in this file.
A sanity check was added to find if `./configure' has been run before
`make' or not (using the `LOCAL.mk' file which is an output of the
configuration step). If `LOCAL.mk' doesn't exist, an error will be printed
informing the user that `./configure' needs to be run first.
The configure script also provides more clear and hopefully better
information on its purpose and what must be done.
Since `make clean', it is executed even when `./configure' hasn't been run,
it will only delete the build directory and its contents when local
configuration has been done.
A `distclean' target was also added which will first "clean" the pipeline,
then delete the `LOCAL.mk.in' file.
To allow rules like `make' to be run even if `BDIR' isn't defined
(`./configure' hasn't been run yet), a fake `BDIR' is defined in such
cases.
|
|
Let's start working on this pipeline independently with this first
commit. It is based on my previous experiences, but I had never made a
skeleton of a pipeline before, it was always within a working analysis.
But now that the pipeline has a separate repository for its self, we will
be able to work on it and use it as a base for future work and modify it to
make it even better. Hopefully in time (and with the help of others), it
will grow and become much more robust and useful.
|